
International Journal of Scientific & Engineering Research, Volume 8, Issue 3, March-2017 109
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

A Review on Ford Fulkerson Graph Algorithm for
Maximum Flow

Srijan Biswas1, Saswata Sundar Laga2, Biswajit Paul3

2nd year B.Tech, Dept. of CSE, Jadavpur University
Assistant Professor, Dept. of ECE, Camellia Institute of technology

Abstract— In the field of Algorithms in Computer Science, Graphs hold a very important position. Many applications commonly used by us require the
application of graphs. For example, we may require the concept of graphs in GPS or Google/Yahoo maps for finding the optimal route between two loca-
tions or in case of finding the cheapest airfare between two destinations and many other such instances.
In this paper we have discussed about the design of maximum flow graph algorithm. The maximum flow problem is one of the most fundamental prob-
lems in network flow theory and has been investigated extensively. The Ford-Fulkerson algorithm is a simple algorithm to solve the maximum flow prob-
lem based on the idea of residual network, augmenting path and cuts. But its time complexity is high and it’s a pseudo-polynomial time algorithm.

Index Terms— Algorithm, augmenting path, flow network, Ford-Fulkerson, graph, maximum flow, residual network.

——————————  ——————————

1 INTRODUCTION

ust as we can model a road map as a directed graph in order
to find the shortest path from one point to another, we can
also interpret a directed graph as a “flow network” and use

it to answer questions about material flows. Imagine a materi-
al coursing through a system from a source, where the materi-
al is produced, to a sink, where it is consumed, the source
produces the material at some steady rate, and the sink con-
sumes the material at the same rate. The “flow” of the material
at any point in the system is intuitively the rate at which the
material moves. Flow networks can model many problems,
including liquids flowing through pipes, parts through as-
sembly lines, current through electrical networks, and infor-
mation through communication networks. We can think of
each directed edge in a flow network as a conduit for the ma-
terial. Each conduit has a stated capacity, given as a maximum
rate at which the material can flow through the conduit. Ver-
tices are conduit junctions, and other than the source and sink,
material flows through the vertices without collecting in them.
In other words, the rate at which material enters a vertex must
equal the rate at which it leaves the vertex. We call this prop-
erty “flow conservation”, and it is equivalent to Kirchhoff’s
current law when the material is electrical current. In the max-
imum-flow problem, we wish to compute the greatest rate at
which we can ship material from the source to the sink with-
out violating any capacity constraints.

Graph cut is a well studied concept in Graph Theory. One of
the major applications of Graph cuts is in the field of Comput-
er Vision. Many fundamental problems in Computer Vision
can be reformulated as a Graph Cut problem and particularly
in case of Max-flow min-cut problem.

 In this paper, we will study the Ford-Fulkerson algorithm
which is based on Max-flow min-cut theorem. Finally, a brief
analysis of the time complexity of the algorithm will be pre-
sented. According to graph theory, a graph cut is the grouping
of nodes in a connected component into two disjoint subsets
and the weight of the cut is defined to be equal to the sum of
the weights of edges that are present between the disjoint sub-
sets. If we consider the graph as a flow network, then an s − t
cut is defined as a graph cut which requires the source and
sink nodes to be in different subsets. The weight of an s − t cut
is called as the capacity of the cut. For a given graph contain-
ing a source and a sink node, there are many possible s − t
cuts. Thus a minimum cut is defined as that s − t cut whose
capacity is less than or equal to every other s − t cut for the
given graph.

2 FORD FULKERSON METHOD

The Ford–Fulkerson method or Ford–Fulkerson algo-
rithm (FFA) is a greedy algorithm that computes the maxi-
mum flow in a flow network. It is called a "method" instead of
an "algorithm" as the approach to finding augmenting paths in
a residual graph is not fully specified or it is specified in sev-
eral implementations with different running times. It was pub-
lished in 1956 by L.R. Ford Jr. and Dr. Fulkerson. The name
"Ford–Fulkerson" is often also used for the Edmonds-Karp
algorithm, which is a specialization of Ford–Fulkerson.
The idea behind the algorithm is as follows: as long as there is
a path from the source (start node) to the sink (end node), with
available capacity on all edges in the path, we send flow along
one of the paths. Then we find another path, and so on. A path
with available capacity is called an augmenting path.
The Ford-Fulkerson algorithm particularly has a lot of applica-
tions in Image Processing and Computer Vision. Some of them
are image segmentation, optical flow estimation, stereo cor-
respondence, etc. where the given problem is transformed into
a maximum flow minimum cut problem and then solved us-
ing the Ford-Fulkerson algorithm.

J

————————————————
• Srijan Biswas is currently pursuing bachelor degree program in Computer

Science and Engineering, Jadavpur University, India, PH-9748340965-
mail: a.srijanbiswas.b@gmail.com

• Saswata Sundar Laga is currently working as Assistant Professor, Elec-
tronics and Communication Dept., Camellia Institute of Technology, MA-
KAUT, India, PH-9477405306, E-Mail: saswata_ece@rediffmail.com

IJSER

http://www.ijser.org/
mailto:a.srijanbiswas.b@gmail.com
mailto:saswata_ece@rediffmail.com

International Journal of Scientific & Engineering Research, Volume 8, Issue 3, March-2017 110
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

3 ALGORITHM
Let G(V,E) be a graph, and for every edge from u to v let
c(u,v) be the capacity and f(u,v) be the flow. We want to find
the maximum flow from the source s to sink t. After every step
in the algorithm the following is maintained:

• The flow along an edge cannot exceed its capacity.

• The net flow from u to v must be the opposite of the net

flow from v to u.

• That is, unless u is s or t, the net flow to a node is zero

except for the source which produces the flow and the
sink, which consumes flow.

• The flow leaving from s must be equal to the one arriving

at t.

• Capacity Constraints: ∀ (u,v) ∈ f(u,v) <= c(u,v)

• Skew Symmetry: ∀ (u,v) ∈ f(u,v) = -f(u,v)

• Flow Conservation: ∀ u ∈ V : u≠s and u≠t
 Σ f (u, w)=0, (where w ∈ v)

• Value(f): Σf(s,u) = Σf(v,t) (where s,u,v,t ∈ E)

This means that the flow through the network is a legal flow
after each round in the algorithm.

We can define the residual network Gf (V, Ef) to be the net-
work with capacity cf (u, v) = c(u,v) - f(u,v). Notice that it can
happen that a flow from v to u is allowed in the residual net-
work, though not allowed in the original network:
• If f(u,v)>0 and c(u,v)=0,

 then cf (v,u) = c(v,u) - f(v,u) = f(u,v) > 0.

The basic algorithm is as follows:
• For each edge (u,v) ∈ G.E, f(u,v)=0

While there exists a path p from s to t in the residual network
• Gf, cf(p)=min{cf(u,v) : (u,v) is in p}

for each edge in (u,v) ∈ p
f(u,v) = f(u,v) + cf(p) (Send flow along the path)
f(u,v) = f(u,v) - cf(p) (the flow might be returned later)

The path in step 2 can be found with a breadth-first or depth-
first search in Gf(V,Ef). When the former is used, the algo-
rithm is called Edmonds-Karp algorithm.

When no more paths in step 2 can be found, s will not be able
to reach t in residual network. If S is the set of nodes reachable
by s in the residual network, then the total capacity in the orig-
inal network of edges from S to the remainder of V is on the
one hand equal to the total flow we found from s to t, and on
the other hand serves as an upper bound for all such flows.
This proves that the flow found is maximal.

4 INTEGRAL EXAMPLE
The following example shows the first steps of Ford Fulkerson
in a flow network with 4 nodes, source A and sink D.

This example shows the worst-case behaviour of the algo-
rithm. In each step, only a flow of 1 is sent across the network.
If breadth-first search were used instead, only two steps
would be needed.

Table 1: Relation between path, capacity and Resulting Flow
Network

PATH

CAPACITY

RESULTING
FLOW

NETWORK

Initial
flow
network

A,B,C,D

=min(cf(A,B), cf(B,C), cf(C,D))

 =min(c(A,B)-f(A,B),c(B,C)–
f(B,C),c(C,D) – f(C,D))

 =min(1000 – 0, 1 – 0, 1000–0) = 1

A,C,B,D

=min(cf(A,C), cf(C,B), cf(B,D))

 =min(c(A,C)–f(A,C),c(C,B)–
f(C,B),c(B,D) – f(B,D))

=min(1000 – 0, 0 – (-1),1000-0)=1

After 1998 more steps…

Resulting
flow
network

Here we can find that the flow is”pushed back” from C to B
when finding the path A, C, B, D.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 3, March-2017 111
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

5 NONTERMINATING EXAMPLE
Considering the flow network depicted in the figure below,
with source s, sink t, capacities of edges e1, e2 and e3 respec-
tively 1, r = (√5 – 1)/2 and 1 and the capacity of all other edges
some integer M ≥ 2. The constant r was chosen so, that r2=1-r.

We use augmenting paths according to the following table,
where
p1={s, v4, v3, v2, v1, t}, p2={s, v2, v3, v4, t} and p3={s, v1, v2, v3,
t}

Table 2: Relation between Augmenting path & Residual Capacities

STEP AUGMENTING
PATH

SENT
FLOW

RESIDUAL CAPACITIES
e1 e2 e3

0 r0=1 r 1
1 {s, v2, v3, t} 1 r0 r1 0
2 p1 r1 r2 0 r1
3 p2 r1 r2 r1 0
4 p1 r2 0 r3 r2
5 p3 r2 r2 r3 0

Note that after step 1 as well as after step 5, the residual capac-
ities of edges e1, e2 and e3 are in the form rn, rn+1 and 0 respec-
tively, for some n ∈ N. This means that we can use augment-
ing paths p1, p2, p1 and p3 infinitely many times and residual
capacities of these edges will always be in the same form.

Fig 1. Flow Network

Total flow in the network after step 5 is 1 + 2(r1 + r2). If we con-
tinue to use augmenting paths as above, the total flow con-
verges to 1+2Σ i=1 ri = 3 + 2r, while the maximum flow is 2M+1.
In this case, the algorithm never terminates and the flow
doesn't even converge to the maximum flow.

6 ANALYSIS
The running time of FORD-FULKERSON depends on how we

find the augmenting path p in line 3 of the basic algorithm. If
we choose it poorly, the algorithm might not even terminate;
the value of the flow will increase with successive augmenta-
tions, but it need not even converge to the maximum flow
value.
In practice, the maximum-flow problem often arises with
integral capacities. If the capacities are rational numbers, we
can apply an appropriate scaling transformation to make them
all integral. If f* denotes a maximum flow in the transformed
network, then a straightforward implementation of FORD-
FULKERSON executes the while loop of lines 3–8 at most |f*|
times, since the flow value increases by at least one unit in
each iteration.
When the capacities are integers, the runtime of Ford Fulker-
son is bounded by O(Ef), where E is the number of edges in
the graph and f is the maximum flow in the graph. However if
the graph has irrational values, the flow might not converge
towards the maximum value and the algorithm runs forever.

7 CONCLUSION
In this paper we have sincerely discussed the Ford-Fulkerson
method for maximum flow, analysed its algorithm and looked
into an example. We can implement this amazing method in
various real world applications. The method has made it easy
to solve several critical problems smoothly. The Ford-
Fulkerson method is indeed a game changer in the world of
graph algorithms.

8 ACKNOWLEDGMENT
The authors would like to take this opportunity to express
their profound gratitude and deep regards to The Department
of Electronics and Communication Engineering and Electrical
Engineering of Camellia Institute of Technology, Madhya-
gram, Kolkata.

9 REFERENCES
[1] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald
L.; Stein, Clifford (2001). "Section 26.2: The Ford–Fulkerson
method". Introduction to Algorithms (Second ed.). MIT Press
and McGraw–Hill. pp. 651–664. ISBN 0-262-03293-7.

[2] George T. Heineman; Gary Pollice; Stanley Selkow (2008).
"Chapter 8:Network Flow Algorithms". Algorithms in a Nut-
shell. Oreilly Media. pp. 226–250. ISBN 978-0-596-51624-6.

[3] Jon Kleinberg; Éva Tardos (2006). "Chapter 7:Extensions to
the Maximum-Flow Problem". Algorithm Design. Pearson
Education. pp. 378–384. ISBN 0-321-29535-8.

[4] Y. Boykov and V. Kolmogorov. Computing geodesics and
minimal surface via graph cuts. In International Conference on
Computer Vision, volume 1, pages 26-33, 2003.

[5] Yuri Boykov and Gareth Funka-Lea. Optimal object extrac-
tion via constrained graph-cuts. International Journal of Com-

∞

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 3, March-2017 112
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

puter Vision (IJCV), 2004, to appear.

[6] L. Ford and D. Fulkerson. Flows in Networks. Princeton
University Press, 1962.

IJSER

http://www.ijser.org/

	1 Introduction
	2 FORD FULKERSON METHOD
	3 ALGORITHM
	5 Nonterminating example
	7 Conclusion
	8 Acknowledgment
	9 References

